Karşılaştırılan iki miktarın birbirine eşit olmaması durumu. Eşitsizlik, , £, ³ ve ¹ sembolleri kullanılarak gösterilir.



> : büyük

³ : büyük veya eşit

£ : küçük veya eşit

x>1, x³-2, 3£x, -4x

ax+b>0, ax+b>0, ax+b£0, ax+b³0 şeklinde yazılabilen ifadelere, birinci dereceden bir bilinmeyenli eşitsizlik denir.

Eşitsizlikler aşağıdaki özelliklere sahiptir. a, b, c birer reel (gerçel) sayı olsun.

Eşitsizlikler aşağıdaki özelliklere sahiptir:

a, b, c birer reel (gerçel) sayı olsun.

1. Eşitsizliğin iki yanına aynı sayılar eklenip çıkartılabilir.

a

a

2. Eşitsizliğin iki yanı, pozitif sayılarla çarpılıp bölünebilir.

a

a . c

3. Eşitsizliğin iki yanı negatif sayılarla çarpılır ya da bölünürse, eşitsizlik yön değiştirir.

a

a . c > b . c ve  olur.

4. a ve b pozitif sayılar ve a

olur.

 olur.

Birinci dereceden bir bilinmeyenli eşitsizlikler;

a,b i R olmak üzere

ax b

biçimindedir.

Örnek 1

2x £ 1 eşitsizliğinin R'de çözüm kümesi aşağıdaki şekilde bulunur.



olur.

Eşitsizliğin çözüm kümesi;  ve  den küçük olan bütün gerçel sayılardır. Bu küme ile gösterilirse,

Ç={x | x£ , xiR}

={ veya 'den küçük gerçel sayılar}

olur.

Bulunan çözüm kümesi sayı doğrusu üzerinde kırmızı ile çizilen bölümdür.



Birinci dereceden iki bilinmeyenli eşitsizlikler,

a,b,c i R olmak üzere,

ax + by c

biçimindedir. Bu eşitsizlikteki bilinmeyenler x ve y'dir. İki bilinmeyenli bir eşitsizliğin çözüm kümesi, bir bölgedir.

Örnek 2

x + y



Verilen eşitsizlikte



Eşitsizlik

Bu grafiğin doğruluğunu kontrol etmek için karalanmış bölgeden bir nokta alınır ve eşitsizlikte x ve y değerleri yerlerine yazılır.

O(0,0) noktası karalanmış bölgede olduğundan, grafiğin doğruluğu bu noktayla sınanır. Eşitsizlikte, x yerine 0, y yerine 0 konur.

x + y

0 + 0

0

olur. Gerçekten 0, 1'den küçüktür. O hâlde, eşitsizlik sağlanmaktadır ve çözüm kümesi grafikte karalanmış olan bölgedir.

İLGİLİ KONULAR

Eşitlik

Kategoriler:
Etiketler:
Önceki
Önceki Konu:
Eşit Kümeler

Yapılan Yorumlar

Henüz kimse yorum yapmamış.

Bu sayfada yer alan bilgilerle ilgili sorularınızı sorabilir, eleştiri ve önerilerde bulunabilirsiniz. Yeni bilgiler ekleyerek sayfanın gelişmesine katkıda bulunabilirsiniz.

Yorum Yapın

Adınız:
Mesajınız:
 
Popüler Sayfalar:
Son Ziyaretler:
© 2015 Bilgiler
Coğrafya